
Fermi National Accelerator Laboratory 

FERMILAR-Conf-94/397 

A Generic Data Exchange Scheme Between 
FITS Format and C Structures 

Wei Peng and Tom Nicinski 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

November 1994 

Presented at the Astronomical Data Acquisition Software System Conference IV, 
Baltimore, Maryland, September 25-28, 1994 

0 Operated by Universities Research Association Inc. under Contract No. DE-ACOZ-76CH030CQ with the United States Department of Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its we would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof, The oiews and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof. 



A Generic Data Exchange Scheme Between FITS Format 
and C Structures’ 

Wei Peng, Tom Nicinski 

Fermi Notional Accelerator Laboratory, PO Box 500,Batavia, IL 60510 

Abstract. A flexible and efficient scheme allowing arbitrary FITS Bi- 
nary and ASCII Tables to be converted to arbitrary C structures at run- 
time is presented. This scheme has been successfully implemented and 
used with Shin (Survey Human Interface and Visualization Environ- 
ment), a package developed by Fermilab for the analysis of Sloan Digital 
Sky Survey data. 

1. Introduction 

The Sloan Digital Sky Survey (SD%), f or which Fermilab has been actively de- 
veloping software and hardware, uses the Flexible Image Transportation System 
(FITS) as the standard exchange format for survey data. Portions of the data 
are presented in FITS Binary and ASCII Tables. Accessing such arbitrary data 
from C structures without knowing the FITS Table layout can be difficult. 

We have developed a versatile scheme to allow data transfer between FITS 
Tables and C data structures. This generic scheme uses two supporting struc- 
tures: a TBLCOL to contain an arbitrary FITS Binary and/or ASCII Table 
and a translation table that maps TBLCOL to a user-specified C structure. 
FITS Tables are read into a TBLCOL structure. With a translation table filled 
in at run-time, C structures can be filled with data from TBLCOLs and vice 
versa. This functionality is incorporated into Shiva, a package developed at Fer- 
milab for analyzing SDSS data. The reading/writing of arbitrary FITS Tables 
into/from TBLCOLs and the translation of TBLCOL data to C structures are 
performed from the Shiva command line at run-time, without any compile-time 
knowledge of the FITS Tables and the C structures. 

All primitive C data types, including characters, integers, floating point 
numbers, strings, as well as arrays and structures of these types are supported. 
Indirect data can also be accessed (through pointers). 

2. TBLCOL Format 

Under Shiva, FITS Binary and ASCII Tables are read into and written from 
TBLCOLs. The TBLCOL format is flexible enough to accommodate any tabular 
data. Once data is in a TBLCOL, the originating FITS Table type is irrelevant. 

‘Sponsored by DOE Contract number DE-ACOZ-76CH03000 

1 



This makes it possible to read in a FITS ASCII Table and then write it out as 
a Binary Table, and vice versa (as long as the resulting FITS Table is legal). 

The TBLCOL format uses three major structures to achieve its goal of 
supporting arbitrary tables: TBLCOL, ARRAY, and TBLFLD. 

Figure 1. TBLCOL Format Components 

As a FITS Table is read in, each field is placed into an ARRAY. The TBLCOL 
structure simply heads the list of ARRAYS. An ARRAY points off to the FITS 
Table data, where each ARRAY element corresponds to the field data from a 
FITS Table row. The TBLFLD structure is optional, containing information 
about a field such as its name (akin to the FITS TTYPEn keyword), scaling and 
zeroing (FITS’ TSCALn ad TZEROn keywords), etc. 

This organization allows quick and easy retrieval of data in a column/field 
oriented way. It also allows a FITS Table to be read into memory without any 
a ptiori knowledge of the FITS file contents or Table structure. 

The ARRAY structure supports FITS Binary Tables having fields that are 
multidimensional arrays in themselves. The data type is not restricted to only 
primitives. Structures and arrays of structures can also be stored in the ARRAY 
and accessed properly. But, such use is not recommended if the TBLCOL is 
intended to be written out as a FITS Binary or ASCII Table (FITS does not 
permit such structures). 

3. Translation Table 

TBLCOLs allow users to read in arbitrary FITS Binary or ASCII Tables. But, 
access to TBLCOL data is only efficient if it is processed on a field by field basis 
(it’s relatively expensive to “bounce” to another field). The use of translation 
tables to move some or all data from a TBLCOL to a C structure can be used to 
circumvent this inefficiency. 

Users build translation tables at run-time, instructing how TBLCOL fields 
and C structure members are related. A translation table is a collection of 
textual entries of the form: 

EntryType FldName C-MemName C-MemType Opthfo 

2 



where EntryType can be either “name” or “coot” and Opthfo contains op- 
tional dimension information. Each entry represents a mapping that associates 
a TBLCOL field, FldName, to a C structure member, CMemName. 

Data copying routines use this mapping, along with a C structure’s schema’ 
to properly copy between the TBLCOL and C structure (or vice versa). Type 
casting, checking structure member and TBLCOL field sizes, allocating memory, 
and traversing pointers are done transparently during the copy. 

3.1. Primitive Data Types and Fixed-size Arrays 

For primitive data types (such a8 characters, integers and floating point num- 
bers), the relation is a straight forward one-to-one mapping. The translation 
routines simply copy the data directly between a TBLCOL field and a C struc- 
ture (with any appropriate type conversions). For example, 

name RA-IN-DEG ra double 

indicates that data from the TBLCOL field RA-INDEG be copied as a double 
precision floating point number to the ra member in a C structure, or vice 
versa. 

Fixed-size arrays of primitive data types are handled in a similar fashion. 
Their size is already embedded in the C structure declaration and reflected in 
the structure’s schema (see Section 4). 

5.2. Dynamically Allocated Arrays 

Non-trivial C structures can have, for example, arrays of C primitive types 
whose memory are allocated at run-time. When transferring data from TBLCOL, 
memory must be allocated properly for the receiving C structure. The size of 
this transfer is obtained from additional information in a translation table entry. 
For instance, a size of “5x10” indicates that the C structure member is a 2. 
dimensional array (5 by 10). When transferring data to TBLCOL, the TBLCOL 
field should have the appropriate space. 

S.S. Indirect Data 

In practice, C structures have pointers to different memory areas. FITS does 
not support pointer data types in Tables. The translation tables take this into 
account through multiline entries. (a main name line followed by one or more 
continuation lines). Each line can have independent dimension information, 
imitating the process of traversing memory links to the ultimate data. 

For example, consider the following two C structures 

typedef struct { typed& struct { 

REGIOB *reg; char *name; 

} KY STRUCT : } RFXXON; 

‘A aehemo describes B C structure at run-time. Applications cm understand a C structure with- 
out needing to be compiled with the structure de&r&on. See Section 4 for more information. 

3 



The translation to match a FITS Table field, REG-NAME, could be 

name REG-NAME reg struct 
cant =*g name string -dimen=lO 

which states that, reg in MYSTRUCT is a pointer to a REGION object. A map- 
ping between REGJAME and reg+name is established. When transferring data 
to TBLCOL, the data pointed to by reg-rname are copied. Likewise, when trans- 
ferring from TBLCOL, two memory allocations are done (one each for reg and 
name) to ensure problem-free copying from REGliAME to reg+name. 

4. Schemas and Concluding Remarks 

A schema is a run-time description of a C structure. It permits applications 
to understand a C structure without being compiled with the structure dec- 
laration. During compilation, the Shiva environment parses C header files to 
generate schema for structures. Information about a structure, such as the 
member names, their sizes, offsets, dimensions, etc., are retained and available 
at run-time. 

Currently there are about 50 C structures used in Shiva., With the transla- 
tion tables, passing data between arbitrary FITS Tables and these structures is 
possible. Applications built on top of Shiva also enjoy this capability. 

References 

NASA/Science Office of Standards and Technology, June 18,1993, Definition of 
the Flezible Image Tmnsport System (FITS), NOST 100-1.0. 

SDSS. Documentation can be accessed through the World Wide Web with the 
following URLs: 

Shiva http://www-sdss.fnal.gov:8000/shiva/doc/www/shiva.home.htmI 
TSLCOL http://www-sdsr.fnal.gov:8OOO/~hiva/doc/www/shTblHome,html 
Translation http://www-sdss.fnal.gov:8OOO/shiva/doc/www/shSchema.html 

4 


